<table>
<thead>
<tr>
<th>Date</th>
<th>Session Time</th>
<th>Session No.</th>
<th>Session Title</th>
<th>Program No.</th>
<th>Presentation Title</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 5</td>
<td>10:10-11:40</td>
<td>1</td>
<td>FPD Photomasks (I) Equipment tools and pellicle</td>
<td>1-1</td>
<td>Outlook of development trends of FPD manufacturing technology and requirements for photomasks</td>
<td>Chanuk Jeon</td>
<td>Samsung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1-2</td>
<td>Enabling production of next generation display photomasks</td>
<td>John-ocar Larsson</td>
<td>Myronic AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1-3</td>
<td>Development of high sensitivity and high speed Large size Blanks Inspection System LBS</td>
<td>Shionobu Ohara</td>
<td>Lasertec corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1-4</td>
<td>Influence of the pellicle for FPD for i-line single wavelength exposure</td>
<td>Kimiyuki Maruyama</td>
<td>ASAI KASEI CORPORATION</td>
</tr>
<tr>
<td></td>
<td>13:00-14:00</td>
<td>2</td>
<td>FPD Photomasks (II) Material and process</td>
<td>2-1</td>
<td>High precision polishing and measurement technology for FPD</td>
<td>Minako Azumi</td>
<td>Nikon Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2-2</td>
<td>Shin-Elu Production technology of super-high-flat and shape-controlled substrate</td>
<td>Ishibuka Youkou</td>
<td>Shin-Elu Chemical Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2-3</td>
<td>New PSM optimized for stable resolution of fine hole in FPD</td>
<td>Nobuhisa Imashiki</td>
<td>HOYA CORPORATION</td>
</tr>
<tr>
<td></td>
<td>14:20-14:50</td>
<td>2</td>
<td>Keynote Lecture</td>
<td>3-1</td>
<td>GPU: the Biggest Key Processor for AI and Parallel Processing</td>
<td>Toru Baji</td>
<td>NVIDIA Japan</td>
</tr>
<tr>
<td></td>
<td>14:50-16:10</td>
<td>3</td>
<td>Use of GPU in mask making (I)</td>
<td>3-2</td>
<td>BACUS Panel Discussion: The Impact of Full-scale Curvilinear ILT OPC on Photomask Manufacturing</td>
<td>Peter D. Buck</td>
<td>Mentor Graphics Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3-3</td>
<td>Modern-Based MPC Enables Curvilinear ILT Using Either VSB or Multi-Beam Mask Writers</td>
<td>Leo Pang</td>
<td>O2S, Inc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3-4</td>
<td>EUV Modeling in the Multi-Beam mask making Era</td>
<td>Ryan Pearman</td>
<td>O2S, Inc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3-5</td>
<td>Simulation-Based MDP Verification for Leading-Edge Masks</td>
<td>Bo Su</td>
<td>O2S, Inc</td>
</tr>
<tr>
<td></td>
<td>16:30-18:00</td>
<td>4</td>
<td>Use of GPU in mask making (II)</td>
<td>4-1</td>
<td>eBeam Initiative Survey Reports Confidence in EUV and Multi-beam Technology</td>
<td>Aki Fujimura</td>
<td>eBeam Initiative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4-2</td>
<td>Electron Beam Lithographic Modeling Assisted by Artificial Intelligence Technology</td>
<td>Noriaki Nakayama</td>
<td>NuFlare Technology, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4-3</td>
<td>Mask CD Relationship to Temperature at the time Backscatter is Received</td>
<td>Harald Zable</td>
<td>O2S Inc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4-4</td>
<td>GPU-Accelerated Inline Mask Correction for the MBM-1000</td>
<td>Aki Fujimura</td>
<td>O2S Inc</td>
</tr>
<tr>
<td>April 6</td>
<td>9:00-10:40</td>
<td>5</td>
<td>Writing technologies</td>
<td>5-1</td>
<td>(Invited) IBACUS Best) World's 1st High-Throughput Multi-Beam Mask Writer</td>
<td>Christof Klein</td>
<td>MSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5-2</td>
<td>(Invited) Performance and Versatility of Multi-Beam Writing</td>
<td>Elmar Platzgummer</td>
<td>MSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5-3</td>
<td>Multi-beam mask writer MBM-1000</td>
<td>Hiroshi Matsumoto</td>
<td>NuFlare Technology, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5-4</td>
<td>Withdraw</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>6-2</td>
<td>Cycle time Reduction by Htmi Report in Mask Checking Flow</td>
<td>Jan-Cheng Chen</td>
<td>United Microelectronics Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>6-3</td>
<td>Data preparation in the age of curvilinear patterns</td>
<td>Patrick Schiavone</td>
<td>ASIELTA Nanographics</td>
</tr>
<tr>
<td></td>
<td>13:40-14:50</td>
<td>7</td>
<td>Lithography related technologies</td>
<td>7-1</td>
<td>(Invited) Computational Imaging: Scaling Walls !</td>
<td>Vivek Singh</td>
<td>Intel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>7-2</td>
<td>Accurate Lithography Simulation Model based on Convolutional Neural Networks</td>
<td>Yuko Watanabe</td>
<td>Toshiba Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>7-3</td>
<td>MTO-like reference mask modeling for advanced inverse lithography technology patterns</td>
<td>Jongu Park</td>
<td>Samsung Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>8-2</td>
<td>Effects of Hard Mask Etch on Final Topography of Advanced Phase Shift Masks</td>
<td>Olga Hordenbach</td>
<td>Advanced Mask Technology Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>8-3</td>
<td>Nonlinear CD etch contribution during EUV ARC etch</td>
<td>Alexander Laj</td>
<td>Advanced Mask Technology Center</td>
</tr>
<tr>
<td></td>
<td>9:00-10:10</td>
<td>10</td>
<td>EUV Masks (I)</td>
<td>10-1</td>
<td>Overcoming EUV mask blank defects: what we can, and what we should</td>
<td>Rk. Jonkheere</td>
<td>imec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>10-2</td>
<td>EUV Mask Readiness for HVM</td>
<td>Changyoung Jeong</td>
<td>Samsung Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>10-3</td>
<td>Application of EUV dark field image for EUVL mask fabrication</td>
<td>Takeshi Yamane</td>
<td>EIDEC</td>
</tr>
<tr>
<td>April 7</td>
<td>10:30-11:40</td>
<td>11</td>
<td>EUV Masks (II)</td>
<td>11-1</td>
<td>NKE Pellet Development Update</td>
<td>John Zimmerman</td>
<td>ASML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>11-2</td>
<td>EUV Pellet and Mask Metrology for High Volume Manufacturing</td>
<td>Rupert Perera</td>
<td>EUV Tech Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>11-3</td>
<td>First light and results at EBL2</td>
<td>Norbert Koster</td>
<td>TNO</td>
</tr>
<tr>
<td></td>
<td>13:00-14:10</td>
<td>12</td>
<td>EUV Masks (III)</td>
<td>12-1</td>
<td>Status of EUV mask qualification for defect free mask manufacturing</td>
<td>Sascha Pertitz</td>
<td>Zeiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>12-2</td>
<td>EUV Repair process optimization and integration</td>
<td>Pavel Nesladek</td>
<td>Advanced Mask Technology Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>12-3</td>
<td>Development of EUV Phase Imaging Microscope for Mask-3D-Effect and Defect Evaluation</td>
<td>Tsutomo Harada</td>
<td>University of Hyogo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>13-2</td>
<td>Development of template fabrication process for contact hole layer application</td>
<td>Koji Itohura</td>
<td>Dai Nippon Printing Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>13-3</td>
<td>Application of EB repair for nanoimprint lithography template</td>
<td>Ai Kumada</td>
<td>Toshiba Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>13-4</td>
<td>Improved Particle Control for High Volume Semiconductor Manufacturing for Nanoimprint Lithography</td>
<td>Masami Yonekawa</td>
<td>Canon Inc.</td>
</tr>
</tbody>
</table>